Reasoning with Memory Augmented Neural Networks for Language Comprehension

نویسندگان

  • Tsendsuren Munkhdalai
  • Hong Yu
چکیده

Hypothesis testing is an important cognitive process that supports human reasoning. In this paper, we introduce a computational hypothesis testing approach based on memory augmented neural networks. Our approach involves a hypothesis testing loop that reconsiders and progressively refines a previously formed hypothesis in order to generate new hypotheses to test. We apply the proposed approach to language comprehension task by using Neural Semantic Encoders (NSE). Our NSE models achieve the state-of-the-art results showing an absolute improvement of 1.2% to 2.6% accuracy over previous results obtained by single and ensemble systems on standard machine comprehension benchmarks such as the Children’s Book Test (CBT) and Who-Did-What (WDW) news article datasets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The relationship between working memory and L2 reading comprehension

Since  an  important  role  for  working  memory  has  been  found  in  the  first  language acquisition  (e.g.,  Daneman,  1991;  Daneman  &  Green,  1986;  Waters  &  Caplan,  1996), research  on  the  role  of  working  memory  is  emerging  as  an  area  of  concern  for  second language  acquisition  (e.g.,  Atkins  &  Baddeley,  1998;  Miyake  &  Freidman,  1998; Robinson,  1995,  2002,  ...

متن کامل

Improving Neural Language Models with a Continuous Cache

We propose an extension to neural network language models to adapt their prediction to the recent history. Our model is a simplified version of memory augmented networks, which stores past hidden activations as memory and accesses them through a dot product with the current hidden activation. This mechanism is very efficient and scales to very large memory sizes. We also draw a link between the...

متن کامل

An fMRI investigation of analogical mapping in metaphor comprehension: the influence of context and individual cognitive capacities on processing demands.

This study used fMRI to investigate the neural correlates of analogical mapping during metaphor comprehension, with a focus on dynamic configuration of neural networks with changing processing demands and individual abilities. Participants with varying vocabulary sizes and working memory capacities read 3-sentence passages ending in nominal critical utterances of the form "X is a Y." Processing...

متن کامل

Ensemble Learning For Machine Comprehension: Bidirectional Attention Flow Models

In this paper, we will explore machine comprehension in Stanford Question and Answering Dataset using ensembled deep recurrent neural networks with bi-directional attention flow. Given a context paragraph, we attempt to answer a query related to the context paragraph. This requires use to not only generate knowledge representation for each question and paragraph, but also create mechanisms that...

متن کامل

Augmented Transition Networks As

DOCUMENT RESUME Kaplan, Ronald M. Augmented Transition Networks of Sentence Comprehension.. Language Research Foundation, Jul 71 42p.; In "Language Research Reports,u No.4 FL 002 651 as Psychological Models

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1610.06454  شماره 

صفحات  -

تاریخ انتشار 2016